Math 60380 - Basic Complex Analysis II

Final Presentation: J-holomorphic Curves and Applications

Edward Burkard

1 Introduction and Definitions

1.1. Almost Complex Manifolds. We begin with a even dimensional manifold V^{2n} . From this, we can form the tangent bundle TV. From the tangent bundle, we can construct a new vector bundle over V, the endomorphism bundle, $\operatorname{End}(TV)$, whose fiber at each point $x \in V$ is the space of endomorphisms of T_xV .

Definition 1 (Almost Complex Structure). An almost complex structure on V is a section J of $\operatorname{End}(TV)$ such that $J^2 = -\operatorname{id}$.

Remark. An almost complex structure J is a complex structure if it is integrable, i.e., the Nijenhuis tensor N_J is zero, where

$$N_J(X,Y) := [JX,JY] - J[JX,Y] - J[X,JY] - [X,Y]$$

for vector fields X and Y.

A pair (V, J), where J is an almost complex structure on V is called an almost complex manifold.

1.2. **J-holomorphic Curves.** Fix a Riemann surface (Σ, j) , where j is a complex structure on Σ . A smooth function $u:(\Sigma, j) \to (V, J)$ is called a *J-holomorphic curve* (more precisely a (j, J)-holomorphic curve) if du is complex linear with respect to j and J, i.e.,

$$J \circ du = du \circ j$$
.

Since j will be fixed throughout our discussions, we will often neglect to mention it, except if required in equations. By composing with J on the left, we can rewrite this equation as

$$du + J \circ du \circ i = 0.$$

The complex antilinear part of du (with respect to J) is

$$\bar{\partial}_J u := \frac{1}{2} (du + J \circ du \circ j),$$

so we can reformulate the definition of a J-holomorphic curve to be the smooth functions which are a solution of the equation

$$\bar{\partial}_J u = 0.$$

This is the analogue of the Cauchy-Riemann equations for J-holomorphic curves. Let's see that this makes sense with our usual notion of holomorphic on \mathbb{C}^n :

Let's first start with passing to local coordinates on Σ . We can work in a chart $\phi_{\alpha}: U_{\alpha} \to \mathbb{C}$ on Σ $(U_{\alpha} \subset \Sigma \text{ is open})$. By doing this, we can assume that our Riemann surface is (\mathbb{C}, i) , where i is the usual complex structure. Let's give \mathbb{C} the coordinates z = s + it. Define $u_{\alpha} = u \circ \phi_{\alpha}^{-1}$. In this case we have

$$\bar{\partial}_{J}u_{\alpha} = \frac{1}{2} \left[\left(\frac{\partial u_{\alpha}}{\partial s} ds + \frac{\partial u_{\alpha}}{\partial t} dt \right) + J(u_{\alpha}) \left(\frac{\partial u_{\alpha}}{\partial t} ds - \frac{\partial u_{\alpha}}{\partial s} dt \right) \right]$$

$$= \frac{1}{2} \left[\left(\frac{\partial u_{\alpha}}{\partial s} + J(u_{\alpha}) \frac{\partial u_{\alpha}}{\partial t} \right) ds + \left(\frac{\partial u_{\alpha}}{\partial t} - J(u_{\alpha}) \frac{\partial u_{\alpha}}{\partial s} \right) dt \right]$$

From this, we can see that $\bar{\partial}_J u_\alpha = 0$ if

$$\frac{\partial u_{\alpha}}{\partial s} + J(u_{\alpha}) \frac{\partial u_{\alpha}}{\partial t} = 0 \tag{1}$$

(the dt coefficient is this, multiplied by $J(u_{\alpha})$).

Now, if we assume $V = \mathbb{C}^n$ with the usual complex structure i, under the identification $\mathbb{C}^n \cong \mathbb{R}^n \oplus i\mathbb{R}^n$ we get

$$i = \left(\begin{array}{cc} 0 & -I_n \\ I_n & 0 \end{array}\right).$$

Letting $u_{\alpha} = f + ig$, equation (1) becomes

$$\left(\frac{\partial f}{\partial s} + i\frac{\partial g}{\partial s}\right) + i\left(\frac{\partial f}{\partial t} + i\frac{\partial g}{\partial t}\right) = \left(\frac{\partial f}{\partial s} - \frac{\partial g}{\partial t}\right) + i\left(\frac{\partial f}{\partial t} + \frac{\partial g}{\partial s}\right) = 0,$$

the familiar Cauchy-Riemann equations (if you like, take n = 1).

1.3. **Symplectic Manifolds.** Given an even dimensional manifolds V^{2n} , a symplectic form on V is a closed, nondegenerate 2-form on V. The nondegeneracy conditions means that, for a vector field X on V, if $\omega(X,Y)=0$ for all vector fields Y, then X=0. A symplectic manifold is a pair (V,ω) where ω is a symplectic form on V.

Example 1. \mathbb{C}^n with its usual coordinates $z_1, ..., z_n$ is a symplectic manifold with the standard symplectic form

$$\omega_0 := \sum_{k=1}^n dx_k \wedge dy_k,$$

where $z_k = x_k + iy_k$.

Definition 2 (Lagrangian Submanifold). Given a symplectic manifold (V, ω) , a Lagrangian submanifold (or simply, a Lagrangian) in V is a submanifold $L \subset V$ such that $\omega|_{TL} = 0$ (where we consider $TL \subset TV$). Note that a Lagrangian submanifold is necessarily half the dimension of V, that is dim L = n.

Example 2. The n-torus $\mathbb{T}^n := \underbrace{S^1 \times \cdots \times S^1}_n$ is a Lagrangian submanifold of (\mathbb{C}^n, ω_0) .

A submanifold $W \subset V$ is called *symplectic* if $\omega|_{TW}$ is again a symplectic form on W.

1.3.1. Hamiltonian diffeomorphisms. Let (V, ω) be a symplectic manifold. Given a smooth function $h: V \to \mathbb{R}$, define the Hamiltonian vector field of f to be the vector field X_h such that

$$i_{X_h}\omega = dh.$$

A Hamiltonian diffeomorphism of V is defined to be the time 1 flow, ψ , of a Hamiltonian vector field.

2. Theorems and Applications

2.1. Generalization of the Riemann Mapping Theorem. Consider again the symplectic manifold (\mathbb{C}^n , ω_0). Let D denote the unit disc in \mathbb{C} . The proof of this result is an application of holomorphic curves, but is quite involved.

Theorem 1 (Gromov '85). Let $L \subset \mathbb{C}^n$ be a compact Lagrangian submanifold. Then there exists a nonconstant holomorphic disc $u: D \to \mathbb{C}^n$ such that $u(\partial D) \subset L$.

A corollary of this theorem essentially says that there are always intersections between a Lagrangian submanifold and any Hamiltonian deformation of it (under appropriate assumptions).

Definition 3 (Convex at Infinity). A noncompact symplectic manifold (V, ω) is called convex at infinity if there exists a pair (f, J), where J is an ω -compatible $(\omega(v, Jv) > 0 \text{ for } v \neq 0 \text{ and } \omega(Jv, Jw) = \omega(v, w) \text{ for all } x \in V \text{ and all } v, w \in T_xV)$ almost complex structure and $f: V \to [0, \infty)$ is a proper smooth function such that

$$\omega_f(v, Jv) \ge 0, \qquad \omega_f := -d(df \circ J),$$

for every x outside some compact subset of V and every $v \in T_xV$.

Corollary. Let (V, ω) be a symplectic manifold without boundary, and assume that (V, ω) is convex at infinity. Let $L \subset V$ be a compact Lagrangian submanifold such that $[\omega]$ vansishes on $\pi_2(V, L)$. Let $\psi: V \to V$ be a Hamiltonian symplectomorphism. Then $\psi(V) \cap V \neq \emptyset$.

2.2. The Nonsqueezing Theorem. Let $B^{2n}(r)$ be the closed ball of radius r and center 0 in \mathbb{R}^{2n} . Another application of holomorphic curves is the following

Theorem 2 (Gromov). If $\iota: B^{2n}(r) \to \mathbb{R}^{2n}$ is a symplectic embedding (the image is a symplectic submanifold of \mathbb{R}^{2n}) such that $\iota(B^{2n}(r)) \subset B^2(R) \times \mathbb{R}^{2n-2}$, then $r \leq R$

and a further generalization of it is

Theorem 3. Let (V, ω) be a compact symplectic manifold of dimension 2n-2 such that $\pi_2(V)=0$. If there is a symplectic embedding of the ball $(B^{2n}(r), \omega_0)$ into $B^2(R) \times V$, then $r \leq R$.

References

- [1] Mikhail Gromov, Pseudo holomorphic curves in symplectic manifolds. Invent. math. 82, 307-347, 1985.
- [2] Dusa McDuff and Dietmar Salamon, *J-holomorphic Curves and Symplectic Topology*. Second edition, AMS Colloquium Publications, vol. 52 (2012).